

Asset Insight Report Demo 198

Transformer Details		
LOCATION	SENSOR ID	NAME PLATE AGE
Unspecified	No sensor installed	34

Health Overvi	iew					
HSP TEMP	HSP WCP	HSP DP ESTIMATE	LIFE LEFT	MIN BDV		
70.6 °C	0.5%	301	23 yrs	98%		

Page 1

Page 2

INSIGHTS

CONCERN

CONDITION INDEX

DATE OF EVENT

Significant Levels of Acetylene (C2H2): 14ppm

D

Dielectric

D

12-Jan-2022

 \rangle

The transformer is generating significant levels of a very dangerous gas which indicates a dangerous fault.

Recommendation

Immediately consider the removal of the transformer from service and implement a program of diagnosis to assess the possibility of repair or need for emergency replacement.

Rogers Gas Limit Analysis

 Low DP: 387
 C
 Dielectric
 D
 15-Aug-2022

The Transformer has degraded cellulose insulation DP (Degree of Polymerization) Low DP

The Transformer has degraded cellulose insulation DP (Degree of Polymerization). Low DP paper has poor mechanical strength and this can result in cracks, voids, and poor interwinding separation strength.

Recommendation

Threshold: ≤ 400 DP

The transformer is aged but best practice indicates it still has useful life (in the absence of other fault signatures). That life can be maximized and the replacement date delayed by ensuring moisture levels are low, periods of high (near nameplate load) is minimized, and the cooling system (including oil) is serviced for maximum efficiency. Due to the aging state of the transformer insulation, a careful approach should be taken when interpreting other signs of partial discharge, arcing, or vibration.

DP Forecast

Poor Insulation Quality C

Dielectric D

10-Jul-2020

The combination of elevated moisture and acidity contaminating the oil likely indicates a poor state of the insulating qualities of the oil. This can lead to partial discharge and load stress-related failure.

Poor condition of the cellulose insulation may increase these risks as the Degree of Polymerization drops below 400 DP.

Recommendation

Consider the assessment of the power factor, dissipation factor, and dielectric response factor of the $transformer\ insulation\ and\ implement\ refurbishment\ as\ necessary\ (drying,\ oil\ replacement\ or$ refurbishment) to protect the remaining life of the transformer.

Water Content of Oil

DATE OF EVENT

 \rangle

Significant Levels of Carbon Monoxide (CO) : 1107ppm C

Solid Insulation C

10-Jul-2020

Threshold: 570 ppm

The transformer is generating gas which indicates hot temperature oxidization of the cellulose insulation. This could be the result of overloading or the development of a cooling problem (such as blocked oil ducts). It may also be the early signs of a serious fault in the core.

Recommendation

Analysis of the cause of gassing is recommended and any necessary rectification works completed in order to protect the remaining life of the transformer. This should be done in a timely way, possibly before the next scheduled rectification works.

Rogers Gas Limit Analysis

— Gas limit for analysis

2020-01-21

Page 6

DATE OF EVENT

 \rangle

Significant Levels of Carbon Dioxide (CO2): 9779ppm C

Solid Insulation C

10-Jul-2020

Threshold: 4000 ppm

The transformer is generating gas which indicates hot temperature oxidization of the cellulose insulation. This could be the result of overloading or the development of a cooling problem (such as blocked oil ducts). It may also be the early signs of a serious fault in the core.

Recommendation

Analysis of the cause of gassing is recommended and any necessary rectification works completed in order to completely protect the remaining life of the transformer. This should be done in a timely way, possibly before the next scheduled rectification works.

Rogers Gas Limit Analysis

— Gas limit for analysis

2020-01-21

High Hot Spot Temperature : 70.6°C

Operating

24-Jul-2022

Threshold: DP > 350 80°C for Kraft, 110 $^{\circ}\text{C}$ for TUK DP \leq 350 70°C for Kraft, 100 $^{\circ}\text{C}$ for TUK DP \leq 200 60°C for Kraft, 90 $^{\circ}\text{C}$ for TUK

High hot spot temperatures place the transformer at risk of moisture droplets and bubbling, plus accelerated aging. High hot spot temperature can be caused by excessive load, extreme ambient conditions, or poor cooling system performance.

Low DP

The transformer's cellulose insulation is badly degraded. DP is less than 350 (DP = 301) and because of this the risk index for 'High Hot Spot Temperature' has been adjusted.

Recommendation

Analyze the root cause of the high hot spot temperatures and rectify in order to protect the remaining life of the transformer.

Temperature Profile

Operating

08-Jul-2022

Threshold: DP > 350 20 ppm

DP ≤ 350 15 ppm

DP ≤ 200 10 ppm

Periods of moderate to high water content of the oil are being observed where the insulation breakdown strength will be reduced to 75% of normal. High moisture in oil often occurs when the operating temperature of a wet transformer falls quickly after a period of high load.

Low DP

The transformer's cellulose insulation is badly degraded. DP is less than 350 (DP = 301) and because of this the risk index for 'High Water Content of Oil' has been adjusted.

High Water Content of Oil : 19ppm B

Recommendation

Monitor WCO closely and consider drying. Consider changing load management procedures to prevent fast temperature drops after periods of high load.

Note: The first three days of WCO data are not taken into account in this insight as it can take up to three days for the moisture sensor to settle.

Water Content of Oil

Threshold: DP > 350 \leq 50 kV DP \leq 350 \leq 60 kV

should be carefully monitored.

 $DP \le 200 \le 70 \text{ kV}$ Oil test results indicate a low breakdown voltage, likely due to contamination in the oil (moisture or breakdown products). It indicates aging or degraded oil performance and

Low DP

The transformer's cellulose insulation is badly degraded. DP is less than 350 (DP = 301) and because of this the risk index for 'Low Breakdown Voltage of Oil (BDV)' has been adjusted.

Update: A -> B

Recommendation

Continue to monitor the state of the oil insulation. Review the partial discharge state of the transformer as low BDV of the oil can cause accelerated PD development.

No relevant graph available.

Page 10

CONCERN DGA ANALYSIS DATE OF EVENT

Discharges of low energy

21-Jan-2020

 \rangle

The IEC analysis indicates low energy arcing is occurring within the transformer. This arcing probably includes some sort of follow on current.

Recommendation

Implement detailed analysis of the cause of the gassing and plan a repair or monitoring program to protect the remaining life of the asset.

CONCERN DGA ANALYSIS DATE OF EVENT

Thermal Decomposition

12-lan-2022

The Doernenburg analysis indicates that there is thermal decomposition occurring within the transformer likely due to overloading or poor cooling system performance (faulty cooling system performance or blocked oil ducts).

Recommendation

Review transformer loading given climatic conditions. Check cooling system performance. Plan rectification action to protect the remaining life of the transformer.

Page 12

Page 13

Transformer Demo 198 Generated on Sep 14, 2022 Email support.dts@se.com ©2022, Schneider Electric

Bottom Measured Temperature & AW

Page 14

Measured Temperatures

Temperature Profile

Page 15

Water Activity Profile

Water Content of Paper

Page 16

Minimum Breakdown Voltage

Moisture Ingress in Oil Indication

Page 17

DP History

DP Forecast

Page 18

Vibrations

Instantaneous Life vs Temperature

Page 19

PD Background

PD Activity (320MHz)

Page 20

PD Activity (437MHz)

PD Activity (926MHz)

Page 21